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Fig. 3. The same as Fig. 2 except for Case 3). The ratio B,/A; is now

determined by the guide parameters.
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Fig. 4. The ratio B /A4, is plotted as a function of 2a /A corresponding to
Fig. 3. Plus sign for ¥ < 45°, minus for ¥ > 45°,

In general, external current return paths at y = + oo are necessary
as for one of the two modes for Cases 1) and 2).

The Poynting vectors P,; and P,; are in general (¥ =45°) a
linear combination of odd and even functions in x. The wave
front is always perpendicular to the z-direction. Neither the
spatial integral over area xy of P,, nor that over area xz of P, is
zero in general. The latter is different from Case 2). In the limit
that 2a > A, the power flow ratio connected with the lower
branch in Fig. 3 (0 < ¥ < 45°) is

P, /P, =tan¥
while that connected with the upper branch (0 < ¥ < 45°) is
P, /P, =tan(¥ +90°).

In that limit, the power flow connected with the lower branch
flows along the slots of the top plate and its power density falls
off exponentially from it toward the other plate while the power
flow connected with the mode of the upper branch flows along
the slots in the bottom plate and its density falls off exponen-
tially toward the top plate. When 2a < A, these two surface-like
modes become more strongly affected by the boundary condi-
tions on the opposite plate and the Poynting vector for each
mode is rotated away from the directions of the slots.

Di1scussioN AND CONCLUSION

All three cases have two slow-wave modes. For Case 1), the
phase velocity of the two modes is the same and independent of
2a/A. In principle, they exist for all frequencies within the
context of the anisotropic sheath model. For Cases 2) and 3),
each mode has, in general, a different phase velocity at a given
frequency. For both cases, v, /v — 1 for one mode and v, /v — 0
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for the other mode when the signal frequency approaches zero.
For wavelengths smaller than the separation of the two aniso-
tropic sheaths of the guide, the phase velocities become frequency
independent. In Case 2) they approach each other, while in Case
3) they stay separated, except for ¥ = 45°, in which instant Case
3) reduces to Case 2). Thus, for Case 3) there are regions of phase
velocities for which neither of the two modes can propagate at
any frequency (¥ = 45°), and the separate modes remain distinct
even at high frequencies. Within the present model all phase
velocities in the above structures are smaller than v except for
A — o where for one of the modes of Cases 2) and 3), v, - v.

It is important to realize that when the y-axis is not bisecting
the angle between the top and bottom slots (8 = ¥) that the
wavefront is perpendicular to the z-direction and propagating
along it while the Poynting vector for each mode is along the slots
for 2a > A and the wave is of a surface-like nature. The mode of
the upper branch in Fig. 3 clings to the bottom plate while the
lower branch clings to the top plate (0 < ¥ < 45°). Each mode is
a linear combination of spatially odd and even terms whose
amplitude ratio is fixed by the angles § and V.

One of the two mode types of Cases 1) and 2) and the single
modes in Case 3) (¥ = 45°) require at y = + ¢ current returns
which are something other than just direct connection at the
edges.
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A Method to Generate Conservation Laws for
Coupled Transmission Systems

0. SCHWELB, MEMBER, IEEE

Abstract —A systematic method is presented for generating a set of
conservation laws for spatially distributed coupled linear systems. In con-
trast with previous practice, where energy balance equations were obtained
by manipulating the fundamental equations of the interaction (the Maxwell
equations or the equations of mechanics), or by determining the invariant
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quadratic forms of the motion, here the coupled systems' equations are used
as the point of departure. The results apply to lossy as well as to lossless
devices. Hllustrative examples examine the acoustic power flow in the
surface acoustic-wave grating reflector and TE-TM-mode coupling in
anisotropic dielectric waveguides.

I. INTRODUCTION

The usefulness of conservation laws reaches beyond the physi-
cal picture provided by them about the energy balance of a closed
system. These laws are also used in conjunction with perturba-
tional and variational techniques [1] to obtain stationary formulas
for the propagation constant of a transmission system, or for the
resonance frequency of a cavity resonator. Methods to generate
conservation laws from the fundamental equations characterizing
the interaction have been described in the literature [2], [3]. The
ubiquitous Poynting theorem, for example, i obtained by
manipulating the Maxwell equations, an analogous conservation
law for elastic waves is based on the equations of motion in solids
[4, ch. 5].

Pease [5] investigated codirectional and contradirectional cou-
pled systems and found fundamental conditions which must be
satisfied by the coupling and transfer matrices characterizing a
conservative system. These conditions involve so-called system
metrics; appropriate matrices which ensure the temporal or spa-
tial invariance of power flow, expressed in a quadratic form. The
metrics, however, are not known a priori; the search for them can
prove to be difficult.

In this paper, a simple method is presented to obtain a set of
conservation laws without having to determine the system met-
rics. The price to pay for this convenience is that the resultant
expressions contain not only the components of the state vector
but their derivatives as well. Thus, the conservation law applies to
a localized point in space or time, rather than to the global
interaction and, consequently, involves the coupling matrix which
describes the evolution of the state vector. There are no restric-
tions placed on the coupling matrix, therefore the method is
equally applicable to lossless or lossy, to uniform or nonuniform,
to codirectional or contradirectional couplers.

Section II reviews the conservation laws expressed in terms of
metrics, Section III introduces the proposed new method, and
finally, Section IV illustrates the new method by way of examples
drawn from ultrasonics and electromagnetics.

II. CONSERVATION Laws

Consider the uniform, linear, distributed system characterized
by

dia(x)/dx=— jRa(x) (D

where x is the spatial coordinate, @’ =[a,, a,] is the two-compo-
nent state vector, and R is the system coupling matrix. Assume,
for the present, that R describes a lossless codirectional coupler.
Factoring — j in (1) simplifies the system matrix of lossless
couplers whose spatial dependence includes the exp(— jk-7)
factor.!

It is well known [6] that conservation of power in this case is
expressed by

¥|a* +layl?)/9x =0 (2)

signifying the invariance of the sum of the modal powers along
the direction of propagation. It is much less recognized that the

'The corresponding temporal differential equation for systems exhibiting
exp(jwt) time dependence is da(r)/dt = jWa(r)
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same system complies with a set of conservation laws
g,= @'K,d = const. (3)

enumerated by the subscript i, where the ¥ denotes Hermitian
conjugation and K, is a 2 X2 matrix, also known as the metric of
the system. Equation (3) is a quadratic form which is independent
of x only when the kernel is an appropriate metric.

The conditions a valid metric must satisfy can easily be ob-
tained [5], either from (1) or from the system transfer matrix
M(x) defined by

a(x)=M(x)a(0). 4)
On the one hand, differentiation of (3) with respect to x and
subsequent substitution of (1) results in the first condition

R'K,=K,R &)

while, on the other hand, direct substitution of (4) into (3)
provides the second condition

K=MK M. 6)

Expressions (5) and (6) are equivalent in the sense that the same
metric satisfies both. For any given system there is an infinite
number of valid metrics, although only a few are considered
useful. For example, the four basic metrics of a lossless forward
coupler having a real coupling coefficient are [7]

_ 1y 1] _L[X+Y 1
K“X[l -Y K2_2X 1 X-Y
K=I1-K, (1)

where I is the identity, Y =1/2(R,, — Ry)/Ry,] is the
asynchronism parameter, and X = (Y2 +1)1/2,

It can be shown [8, ch. 9] that the conditions analogous to (5)
and (6), applicable to lossless backward couplers are R¥K, = K, R
and K, = M*K, M, respectively, where the adjoint operation de-

noted by the # superscript is defined by

«_ |1 0] T[l 0]

4 [O -1 4 0 —1r (8)
The search for a metric which satisfies (5) or (6), or their

backward wave analogues, can be quite laborious, especially

when R and M are larger than 2X2. A simpler method to

generate a set of conservation laws is described in the next
section.

Ko=1

III. ANALYSIS

Consider first the two-dimensional linear system (1) and recall
the Pauli spin matrices o,, i = 0,1,2,3 defined by [9]

B N LI R Ly
9

where ¢, 0,, and o5 are known to have the following properties:

T = 2 = = =7
o/=0, o =1, Tr(o,6)=29,,, 0,6,=—g0, and 0,0, = jo,

i, J, k in cyclic order. To construct a conservation law, determine

dle,a’ = — jate,Ra (10)
and its complex conjugate
(a'e,a’)' = ja'Rioa (11)
then add and subtract them. The desired expressions are
2Re(a'%s,a’)+ ja'(o,R—Rio)a=0, i=0,1,2,3 (12)
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and

2Im(a‘e,a’)+a*(o, R+ R'o,)a=0, i=0,1,2,3 (13)

representing a total of eight real conservation laws. Note that in
optics, @0, is known as the ith component of the Stokes vector
5(z) [9]. Therefore, instead of (12), one can also write

s, + ]ZiT(o,R - RT0,)£7= 0.

(14)

Conservation laws for larger coupled systems, whose dimen-
sionality is divisible by two, can also be generated by the above
method using the Kronecker or direct product [8, ch. 14]. For
example, in a four dimensional system, the expression

a'(0,x0,)a' =~ ja'(o,X 0 )Ra

(15)

and its complex conjugate can be used in place of (10) and (11).
Subsequent addition and subtraction provide the desired con-
servation laws which are formally identical to (12) and (13) if o, is
replaced by o, X g, everywhere.

A note of caution regarding the evaluation of (12) and (13).
When R includes a differential operator one must remember that
in the a'RY0,@ term this differential operator operates on the
elements of &', rather than on those of a. For example, when

~ Ja _ _|a/dy 0
a [az] o,——ooandR—[ 0 — 3,9y
0 Imé+a,B,/k
ds _, Imé +a,B,/kg 0
dx Imx 0
Rex 0
then
a'Rle,a = a*da%/dy — a%dat/dy (16)
whereas
atoyRa=atda,/dy — a%da,/dy an

the asterisk indicating complex conjugation.

In the foregoing, no restriction has been placed on R. Accord-
ingly, the described method is applicable to lossy systems as well
as to lossless ones, to-backward couplers as well as to forward
couplers. In fact, R may itself depend on x as in tapered, chirped,
or periodically coupled devices.

IV. APPLICATIONS

A few examples will now be considered.

Example 1: Surface Acoustic Wave Grating Reflector

The system matrix characterizing a “wide” surface acoustic
wave grating reflector is [10]

R 8+(1/2ky)d%/3y? K
B —8=(1/2ky) 9%/ 3>

where § = [(w — jo)— wy]/v is the complex detuning parameter,
x is the complex coupling coefficient between the forward and the
backward traveling waves, w, is the Bragg frequency, v is the
phase velocity of the x directed Rayleigh wave in the nondisper-
sive approximation, k, = wy /v, and diffraction across the width
of the device is accounted for by the (1/2k,)3%/3y? term.

The conservation laws corresponding to i =0 and 1 in (12) are

(18)

_K*
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in this case

__6__ 2 _1p)? i & 2 PAY I 2 2
o llal” =167 ]+ 51 2 (1al® +161°) | = 2[jal* +15* ]im3 (19)

and
8
= lla 161+ 5 [k—f)(lalz —|b12)]

=2[|a|?* —|b|*]Im& +4Re(ab*)Imk —4Im(ab*)Rex (20)

where a and b are the normalized forward and backward travel-
ing wave amplitudes, respectively, and 9/dy = — jk,=—a,—
B,

‘Recognizing that |a|?>—|b|?> is the net surface power flow
density (power per unit width) in the x direction, that Imé = ¢ /v,
where ¢ is the exponential decay rate, and that (ja|? +|b|?)/v is
the surface energy density (energy per unit area) in the device,
(19) is immediately identified as Poynting’s theorem. Equation
(20) is complementary to (19) in the sense that while the . A.s. of
(19) describes the two-dimensional divergence of p=|la|®—
|b*14, +(B, /ko)l|al* +]b|*]4,, (20) is the corresponding diver-
gence of g={lal* +{b|*1a, +(B,/ko)llal> —|b|*14,. Either of
these expressions can be used in a variational principle to de-
termine, e.g., the resonance frequency of an eigenmode in a
Fabry—Perot resonator [10]. '

Carrying out the differentiation with respect to y, the four
conservation laws contained in (12) result in

Imk Rex
0 0
5 1)
0 —Re & +Rek? 2k,
Re & —Rek} /2k, 0

where s, =[a*, b*]o,[4]. In a coupler where a and b represent
orthogonally polarized waves (21) determines the evolution of
polarization along the axial coordinate [11].

Example 2: Lossless Anisotropic Dielectric Slab Waveguide

It has been shown [12] that in each homogeneous region of a
lossless, anisotropic dielectric slab waveguide Maxwell’s equa-
tions reduce to (1) where x is the coordinate normal to the
interfaces, perpendicular to the direction of propagation z, a’ =
[E,,noH,, E,, — noH,] is the state vector of the field components
lying in the plane of the interface, 1y = (st /€,)"/?, and R is a
4 X 4 constant matrix whose elements contain the axial wavenum-
ber k, and the relative permitivities of the regione, , 7, j = x, y, z.
The diagonal blocks of R describe, respectively, TE- and TM-wave
propagation in the guide. Off-block diagonal elements represent
TE-TM coupling. In case of uniaxial dielectrics in what is known
as the longitudinal or polar configuration, a reference to the optic
axis lying in the x—y or y—z plane, respectively, (1) can be
transformed into a very simple set of second-order differential
equations. In the polar case, for example, one obtains

0’E,/3x*> =~ AE,and 3*°H, /dx*=— A"H,

(22)

where
— E — H,
T ’ Hr = :
E, - H,
and
ke, — k2 kie,.
A= k2  — k2 2. 12 :
0€_vz kzeyz/exx k0€z: kzez:/exx
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A set of conservation laws can be obtained either by substitut-
ing (22) into

2Re(Efo,E/)+ El(0,A+ A7) E, =0, i=0,1,2,3(23)
and
2Im(E}o,E!' )~ jE/(0,4— A"0,)E,=0, i=0,1,2,3
(24)

where the prime indicates differentiation with respect to x, or by
applying the Kronecker product method described in Section III
Since the transverse field vectors in a homogeneous anisotropic
dielectric are connected through the wave impedance matrix,

E, = n,ZH, and, consequently,  can be expressed by H, alone

_ Z |5
a='qOP[aO]H7 (25)
where
1 0 0 0
10 0 1 0
P=lo 1 0 o
0 0 0 1

is a permutation matrix, the Kronecker product procedure yields
for the first set of conservation laws

2 [HoH, ]+ j[AVT] =0

where the 2 X2 matrices Q and V are

o-[a]raxayr[d]

(26)

and

V= [irp[("r X g,) R = R(q, % “f)]P["ZO]

respectively.

When — jk, is substituted for d /dx in (23), four expressions
are obtained, each of which depends on k2, Re k2, the frequency
parameter k3, and the TE-TM field ratio r=E,/E, of an
elementary wave. These expressions are

k2
i €

xXx

€ Z ezz
1+€—y—Rer'+ |r|2}+Rek§[1+|r|2]

XX

= kg[eyy +2¢,Rer+ e:;|r|2]

€, e
k? [1 ~“Rer- S—‘|r|2 +Rek2[1-|r12] = k3[e,, — €.lr?]

XX XX

€
kf[—”— +(1 + :i)ker] +Rek2[2Rer]
XX XX

= k%[cyz(1+|r|2)+(eyy +¢.,)Re r]

[kzz(l-l-Si)+2Rek§—(eyy+e”)k§ Imr=0. (27)
On the other hand, (26) supplies 16 equations of the type encoun-
tered in Example 1, where the spatial rate of change of a power
flow density (power per unit area) is compared to the decay rate
of the energy density (energy per unit volume). From this large
number of conservation laws one must carefully select those
which are most useful.

Note that (26) as well as (27) are expressed in terms of field
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amplitudes. These are therefore potentially suitable to be used in
a stationary formula to determine k, or the impedance parame-
ters for a given frequency [1]. In addition, each of (27) describes
an ellipse in terms of the TE-TM field ratio r, whose principal

axes are k,/ky=c/v,, and k,/ko=c/v,,. Since the r is di-

rectly related to the angle enclosed between the z direction and
the optic axis, this so-called slowness ellipse [4, sec. 7D] provides
a useful relationship between crystal orientation and the inclina-
tion of angled waves in the guide.

V. CONCLUSIONS

A simple method has been introduced to generate conservation
laws applicable to linear transmission systems characterized by
their coupling matrix. These conservation laws are useful for
obtaining stationary formulas for the propagation constant of a
waveguide, for the modal resonance frequency of a cavity resona-
tor, for the impedance parameters characterizing a TE-TM mode
coupler, or for determining the dependence of angled waves on
crystal orientation in an anisotropic slab waveguide, etc. Exam-
ples related to acoustic surface wave devices and anisotropic
dielectric waveguides illustrate the method.
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Equivalent Circuit of a Gap in the Central Conductor
of a Coaxial Line

SUSANTA SEN anD P. K. SAHA

Abstract — The equivalent circuit of a gap in the central conductor of a
TEM coaxial line has been determined by the variational technigue.
Theoretically computed circuit parameters show excellent agreement with
the experimental data available in the literature. The gap equivalent circuit
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