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ratio If, /,4, is plotted as a function of 2a/X corresponding to

Fig. 3. PSus sign for V <45”, minus for’1 >45”.

In general, external current return paths at y = + cm are necessary

as for one of the two modes for Cases 1) and 2).

The Poynting vectors P,l and F’Y1 are in general (V ==45°) a

linear combination of odd and even functions in x. The wave

front is always perpendicular to the z-direction. Neither the

spatiaf integral over area xy of P,l nor that over area xz of F’Y1is

zero in general. The latter is different from Case 2). In the limit

that 2a ~ A, the power flow ratio connected with the lower

branch in Fig. 3 (O< ~ < 45°) is

Pz, /Py, = tantP

while that connected with the upper branch (O < V < 45°) is

Pz, /Py, = tan(v +90”).

In that limit, the power flow connected with the lower branch

flows along the slots of the top plate and its power density falls

off exponentially from it toward the other plate while the power

flow connected with the mode of the upper branch flows along

the slots in the bottom plate and its density falls off exponen-

tially toward the top plate. When 2a < A, these two surface-like

modes become more strongly affected by the boundary condi-

tions on the opposite plate and the Poynting vector for each

mode is rotated away from the directions of the slots.

DISCUSSION AND CONCLUSION

All three cases have two slow-wave modes. For Case 1), the

phase velocity of the two modes is the same and independent of

2a/ A. In principle, they exist for all frequencies within the

context of the anisotropic sheath model. For Cases 2) and 3),

each mode has, in general, a different phase velocity at a given

frequency. For both cases, Vp/v ~ 1 for one mode and VP/o ~ O

for the other mode when the signaf frequency approaches zero.

For wavelengths smaller than the separation of the two aniso-

tropic sheaths of the guide, the phase velocities become frequency

independent. In Case 2) they approach each other, while in Case

3) they stay separated, except for ~ = 45°, in which instant Case

3) reduces to Case 2). Thus, for Case 3) there are regions of phase

velocities for which neither of the two modes can propagate at

any frequency (V * 450), and the separate modes remain distinct

even at high frequencies. Within the present model all phase

velocities in the above structures are smaller than v except for
~ - m where for one of the modes of Cases 2) and 3), VP~ ~.

It is important to realize that when the y-axis is not bisecting

the angle between the top and bottom slots (8* Y) that the

wavefront is perpendicular to the z-direction and propagating

along it while the Poynting vector for each mode is along the slots

for 2a> A and the wave is of a surface-like nature. The mode of

the upper branch in Fig. 3 clings to the bottom plate while the

lower branch clings to the top plate (O < T < 450). Each mode is

a linear combination of spatially odd and even terms whose

amplitude ratio is fixed by the angles 8 and ~.

One of the two mode types of Cases 1) and 2) and the single

modes in Case 3) (V # 450, require at y = + m current retu”ms

which are something other than just direct connection at the

edges.
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A Method to Generate Conservation Laws for

Coupled Transmission Systems

0. SCHWELB, MEMBER,lEEE

Abstract —A systematic method is presented for generating a set of

conservation laws for spatially distributed coupled linear systems. In con-

trast with previous practice, where energy balance equations were obtained

by manipulating the fundamental equations of the interaction (the Mmwell

equations or the equations of mechanics), or by determining the invariant
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quadratic forms of the motion, here the coupled systems” equations are used

as the point of departure. The results apply to lossy as well as to lossless

devices. Illustrative examples examine the acoustic power flow in the

surface acoustic-wave grating reflector and TE-TM-mode coupling in

anisotropic dielectric wavegnides.

I. INTRODUCTION

The usefulness of conservation laws reaches beyond the physi-

cal picture provided by them about the energy balance of a closed

system. These laws are also used in conjunction with perturba-

tional and variational techniques [1] to obtain stationary formulas

for the propagation constant of a transmission system, or for the

resonance frequency of a cavity resonator. Methods to generate

conservation laws from the fundamental equations characterizing

theinteraction have been describedin the literature [2], [3]. The

ubiquitous Poynting theorem, for example, is obtained by

manipulating the Maxwell equations, an analogous conservation

law for elastic waves is based on the equations of motion in solids

[4, ch. 5].

Pease [5] investigated codirectional and contradirectional cou-

pled systems and found fundamental conditions which must be

satisfied by the coupling and transfer matrices characterizing a

conservative system. These conditions involve so-called system

metrics; appropriate matrices which ensure the temporal or spa-

tial invariance of power flow, expressed in a quadratic form. The

metrics, however, are not known a priori: the search for them can

prove to be difficult.

In this paper, a simple method is presented to obtain a set of

conservation laws without having to determine the system met-

rics. The price to pay for this convenience is that the resultant

expressions contain not only the components of the state vector

but their derivatives as well. Thus, the conservation law applies to

a localized point in space or time, rather than to the global

interaction and, consequently, involves the coupling matrix which

describes the evolution of the state vector. There are no restric-

tions placed on the coupling matrix, therefore the method is

equally applicable to lossless or lossy, to uniform or nonuniform,

to codirectional or contradirectional couplers.

Section II reviews the conservation laws expressed in terms of

metrics, Section III introduces the proposed new method, and

finally, Section IV illustrates the new method by way of examples

drawn from ultrasonics and electromagnetic.

II. CONSERVATION LAWS

Consider the uniform, linear, distributed system characterized

by

r?ti(.x)/dx =-jRti(.x) (1)

where x is the spatial coordinate, ti~ = [a,, a ~] is the two-compo-

nent state vector, and R is the system coupling matrix. Assume,

for the present, that R describes a lossless codirectional coupler.

Factoring – j in (1) simplifies the system matrix of lossless

couplers whose spatial dependence includes the exp( – j~. ~)

factor. }

It is well known [6] that conservation of power in this case is

expressed by

d(\a1\2+\a2\2)/dx=0 (2)

signifying the invariance of the sum of the modal powers along

the direction of propagation. It is much less recognized that the

1The corresponding temporal differential equation for systems exhrbltmg

exp( )at) time dependence is c?2i(t)/c?t = J I. J@(l)

same system complies with a set of conservation laws

q, = ii+K, z = const. (3)

enumerated by the subscript i, where the ~ denotes Hermitian

conjugation and K, is a 2 X 2 matrix, also known as the metric of

the system. Equation (3) is a quadratic form which is independent

of x only when the kernel is an appropriate metric.

The conditions a valid metric must satisfy can easily be ob-

tained [5], either from (1) or from the system transfer matrix

M(x) defined by

E(X)= A4(X)Z(0). (4)

On the one hand, differentiation of (3) with respect to x and

subsequent substitution of (1) results in the first condition

RtK, = K,R (5)

while, on the other hand, direct substitution of (4) into (3)

provides the second condition

K, = MfK, M. (6)

Expressions (5) and (6) are equivalent in the sense that the same

metric satisfies both. For any given system there is an infinite

number of valid metrics, although only a few are considered

useful. For example, the four basic metrics of a lossless forward

coupler having a real coupling coefficient are [7]

KO=I
~=+[: -:1 ‘2=+JXTY X!YI

K3=I– K2 (7)

where I is the identity, Y = l/21(R1, – R22)/R ,21 is the

asynchronism parameter, and X = (Y* + 1) ‘/2.

It can be shown [8, ch. 9] that the conditions analogous to (5)

and (6), applicable to lossless backward couplers are R*K, = K, R

and K, = M*K, M, respectively, where the adjoint operation de-

noted by the # superscript is defined by

‘*=[:-:IA’[: -!1 (8)

The search for a metric which satisfies (5) or (6), or their

backward wave analogues, can be quite laborious, especially

when R and M are larger than 2 X 2. A simpler method to

generate a set of conservation laws is described in the next

section.

III. ANALYSIS

Consider first the two-dimensional linear system (1) and recall

the Pauli spin matrices u,, i = 0,1,2,3 defined by [9]

(9)

where al, Uz, and Uq are known to have the following properties:

o!= o,, 0,2=Z, Tr(a, q)= 28,1,
‘!OJ=—aJG~3

and u, u] = J’Ok,

i, j, k in cyclic order. To construct a conservation law, determine

~?ozat = — j~’halR~

and its complex conjugate

(~ta,y t) = j~$RfO,~

then add and subtract them. The desired expressions are

2Re(iitu,ii’)+ jtit(ulR -Rtu, )i7=0, i= 0,1,2,3

(lo)

(11)

(12)
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and

21m(i7tu, ti’)+iit(u,R + Rful)ii=O, i=0,1,2,3 (13)

representing a total of eight reaf conservation laws. Note that in

optics, Ztu, ti is known as the i th component of the Stokes vector

.i( z ) [9]. Therefore, instead of (12), one can also write

S;+JFJ(U,R–RL7Z)Z=0. (14)

Conservation laws for larger coupled systems, whose dimen-

sionality is divisible by two, can also be generated by the above

method using the Kronecker or direct product [8, ch. 14]. For

example, in a four dimensional system, the expression

a*(utxo,)ti’= -jtit(ozxa,)Rti (15)

and its complex conjugate can be used in place of (10) and (1 1).

Subsequent addition and subtraction provide the desired con-

servation laws which are formally identical to (12) and (13) if a, is

replaced by o, x ~ everywhere.

A note of caution regarding the evaluation of (12) and (13).

When R includes a differential operator one must remember that

in the iitRtu, E term this differential operator operates on the

elements of tit, rather than on those of ii. For example, when

[1al

[

a/ay o~=
az u,=oOand R= o

– a/ay 1
o

1
Im 8 + aY/3Y/k0

g=2
Im ~

Re ~

Im8 + aY~Y/kO

o

0

0

then

(16)iifR~aOii= a:ila;/ay – a;i7a;/ay

whereas

(17)ZtaORti= a~~al/8y – a~2a2/Jy

the asterisk indicating complex conjugation.

In the foregoing, no restriction has been placed on R. Accord-

ingly, the described method is applicable to lossy systems as well

as to lossless ones, to-backward couplers as well as to forward

couplers. In fact, R may itself depend on x as in tapered, chirped,

or periodically coupled devices.

IV. APPLICATIONS

A few examples will now be considered.

Example 1: Surface A coastic Wave Grating Reflector

The system matrix characterizing a “wide” surface acoustic

wave grating reflector is [1O]

[

R= 8+(1/2 ko)#/ay2 K

–8–(1/2kO)a2/ay2 1

(18)
— K*

where 8 = [(w – ju ) – ~0 ]/u is the complex detuning parameter,

~ is the complex coupling coefficient between the forward and the

backward traveling waves, UO is the Bragg frequency, v is the

phase velocity of the x directed Rayleigh wave in the nondisper-

sive approximation, k.= UO/v, and diffraction across the width

of the device is accounted for by the (1/2 k. ) 82/ dy 2 term.

The conservation laws corresponding to i = O and 1 in (12) are

in this case

[ -1~[[alz-lbl’]+~ ~([alz+lblz) =2[la[2+lb12]Im8 (19)

and

[
+[lalz-l~lz]++~(lalz-ld’) 1

=2[la12–lb12]Im8 +4 Re(ab*)Im N–41m(ab*)Re~ (20)

where a and b are the normalized forward and backward travel-

ing wave amplitudes, respectively, and d/ii y = – jkY = – aY –

jb,,.
Recognizing that \a 12– \bl 2 is the net surface power flow

density (power per unit width) in the x direction, that Im 8 = u/v,

where u is the exponential decay rate, and that (la [2 + 1bl 2)/v is

the surface energy density (energy per unit area) in the device,

(19) is immediately identified as Poynting’s theorem. Equation

(2o) is complementary to (19) in the sense that while the 1.h.s. of

(19) describes the two-dimensional divergence of ~= [Ialz -

l~lzl~, + (By/& )[la12+ Iblzl6Y,(20)is the corresponding diver-
gence of ~=[la12+lb12]dX +(~,/kO)[la12 –[b[2]6,. Either of

these expressions can be used in a variational principle to de-

termine, e.g., the resonance frequency of an eigenmode in a

Fabry-Perot resonator [10].

Carrying out the differentiation with respect to y, the four

conservation laws contained in (12) result in

Im ~ Re ~ 1
0 0

0 –Re 8 +Rek~/2k0 s

Ret3-Rek~/2k0 o 1

(21)

where s, = [a*, b*] a, [ ~]. In a coupler where a and b represent

orthogonally polarized waves (21) determines the evolution of

polarization along the axial coordinate [11 ].

Example 2: Lawless Anisotropic Dielectric Slab Waveguide

It has been shown [12] that in each homogeneous region of a

lossless, anisotropic dielectric slab waveguide Maxwell’s equa-

tions reduce to (1) where x is the coordinate normal to the

interfaces, perpendicular to the direction of propagation z, ti~ =

[ EY, nO E, E, – ~0~, 1 is the state vector of tie field components

lying in the plane of the interface, q.= ( po/co )1/2, and R is a

4 x 4 constant matrix whose elements contain the axial wavenum-

ber k= and the relative permitivities of the region e,,, i, j = x, y, z.

The diagonal blocks of R describe, respectively, TE- and TM-wave

propagation in the guide. Off-block diagonal elements represent

TE–TM coupling. In case of uniaxial dielectrics in what is known

as the longitudinal or polar configuration, a reference to the optic

axis lying in the x – y or y – z plane, respectively, (1) can be

transformed into a very simple set of second-order differential

equations. In the polar case, for example, one obtains

d2~,/ax2 = – A~, and a2~,/8x2 = – AT~T (22)

where

and



2026 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES VOL. 30, NO. 11, NOVEMRER 1982

A set of conservation laws can be obtained either by substitut-

ing (22) into

2Re(~~uZ~~’) +~~(u,~+~TU, )~7=0, z=O,l ,2,3(23)

and

21m(~~ui~~’)– j~$(ul~ – ~Tul)~T = O, i= 0,1,2,3

(24)

where the prime indicates differentiation with respect to x, or by

applying the Kronecker product method described in Section III.

Since the transverse field vectors in a homogeneous anisotropic

dielectric are connected through the wave impedance matrix,

~,= TJOZ~, and, consequently, ii can be expressed by ~, alone

where

P=

[1z~ii=qol’ ~. ,

1000
0010
0100

10001

(25)

is a permutation matrix, the Kronecker product procedure yields

for the first set of conservation laws

~[~~QH,]+j[~$V~T]=O
ax ‘

(26)

where the 2 X 2 matrices Q and V are

and

V=[:]’P[(OZ XO,)R-R’(O, XO,)]P[:]

respectively.

When – jkX is substituted for i7/ t?x in (23), four expressions

are obtained, each of which depends on k;, Re k:, the frequency

parameter k;, and the TE–TM field ratio r = E=/EY of an

elementary wave. These expressions are

[ 1k! l+~Rer’+~lr\2 +Rek~[l+lr\2]
xx xx

=k~[cyy +26y.Jler+c..lr12]

[ 1
k; l–>Rer–>\r12 +Rekj[l –lr12]= k~[cyy–c,=lr12]

xx xx

= ki[cy, (l+lr12)+(cyy+ c,,)Rer]

[k~(l+~]+2Rekl-(cyy +c,z)ki]Imr=0. (27)

On the other hand, (26) supplies 16 equations of the type encoun-

tered in Example 1, where the spatial rate of change of a power

flow density (power per unit area) is compared to the decay rate

of the energy density (energy per unit volume). From this large

number of conservation laws one must carefully select those

which are most useful.

Note that (26) as well as (27) are expressed in terms of field

amplitudes. These are therefore potentially suitable to be used in

a stationary formula to determine k= or the impedance parame-

ters for a given frequency [1]. In addition, each of (27) describes

an ellipse in terms of the TE–TM field ratio r, whose principal

axes are kx/ko = c/vpx and k,/ko = c/vpz. Since the r is di-

rectly related to the angle enclosed between the z direction and

the optic axis, this so-called slowness ellipse [4, sec. 7D] provides

a useful relationship between crystal orientation and the inclina-

tion of angled waves in the guide.

V. CONCLUSIONS

A simple method has been introduced to generate conservation

laws applicable to linear transmission systems characterized by

their coupling matrix. These conservation laws are useful for

obtaining stationary formulas for the propagation constant of a

waveguide, for the modal resonance frequency of a cavity resona-

tor, for the impedance parameters characterizing a TE–TM mode

coupler, or for determining the dependence of angled waves on

crystal orientation in an anisotropic slab waveguide, etc. Exam-

ples related to acoustic surface wave devices and anisotropic

dielectric waveguides illustrate the method.
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Equivalent Circuit of a Gap in the Central Conductor

of a Coaxial Line

SUSANTA SEN AND P. K. SAHA

Abstract —The equivalent circuit of a gap in the central conductor of a

TEM coaxial line has been determined by the variational technique.

Theoretically computed circuit parameters show excellent agreement with

the experimental data available in the literature. The gap equivalent circuit
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